Instruction Manual

1. Product Introduction

It can control 1-4 axes, and 1 analog spindle output. It is equipped with 16 input ports and 8 output ports, and also supports imported gcode files from USB stick.

2. Technical Specifications

Minimum data unit 0.001 mm (Resolution)
Maximum data size $\pm 99999.999 \mathrm{~mm}$
Maximum Speed: $9000 \mathrm{~mm} / \mathrm{min}$ (pulse is 0.001 mm)
Maximum pulse output frequency 150 KHz
Axis 1-4 (X,Y, Z,C)
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{C}$ axis can conduct linear interpolation, X, Y can do circular interpolation.
Electric Gear: numerator :1-99999 denominator: 1-99999
USB: Imports gode program and boot picture (splash screen)
Isolated I/O port
Maximum number of allowed program lines: 5000
Maximum Program: 100
RAM: 128M
External Manual Operation: motor clockwise and counter clockwise spinning, start, pause, alert and stop
G code and M code
One panel MPG
3.5 inch color LCD, pixel $320 * 240$

Analog Spindle Output: $10-10 \mathrm{v}$ analog spindle

Operation

1. Main Interface

This is the interface showing after booting without boot picture. It shows the coordinates of each axis, F speed and rate, S speed and rate, as well as condition of input and output port. P1000 means the program currently running; 123 means the input method. You can get into the AUTO, JOG, PROG, PAR, USB as well as password interface from here.

2.Auto

In Auto Interface, Press start to run the last read program, Press Pause to Stop.

2.1 Step

Positive display means consecutive operation. Negative display means operate command by command. When it is negative display, press Start once, one program line will be executed.

3.4.2 Edit

- Press Enter to insert new line.
- Long press DEL to delete a line.
- Press $\longleftrightarrow \uparrow \downarrow$ to move the cursor
- Top: To the fist line
- BTM: to the last line
- Test: See if there are any mistake
- Save: Save program
- Auto: Into Auto Interface.

3. Jog

- Press $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and C to choose relevant axis.
- S for feeding rate gaining, N for feeding rate decreasing. ($10 \%-150 \%$)
- G for spindle rate gaining, M for spindle rate decreasing. (10\%-150\%)
- Press Shift to change output port, press Enter to change from ON or OFF.
- Press \leftarrow and \rightarrow for consecutive running.
- Press \uparrow and \downarrow for jogging, define the jog distance in PAR-Ctrl-Jog+Distance; define jog speed in PAR-Speed-Jog.

3.1 Speed

Speed : Negative display means manual high speed, positive display means manual low speed. Press \leftarrow and \rightarrow for consecutive running.

3.2 MPG

Press MPG, then move the wheel up, the axis chosen move positively, move the wheel down, the chosen axis move negatively. Press X10X100 to change the cardinal number which shown on the top of the screen.

Status	Cardinal Number
X1	0.001 mm
X10	0.01 mm
X100	0.1 mm

3.3 BPZ

Press this key the chosen axis go back to reference point at highest speed. Define the highest speed in Parameters-Speed.

3.4 All 0

Press this key the chosen axis go back to reference point at highest speed. Define the highest speed in Parameters-Speed. F is the combination speed of all axis.

3.5 BMZ

Return to machine zero. The chosen axis will move at BMZ High Speed to go back to machine zero, then touch the switch and move at BMZ Low Speed, finally stop on the switch. In order to use this function, the X 0/Y 0/Z 0/C 0 has to be set as "On" in Parameters-Ctrl; Set BMZ High and BMZ Low in Parameters-Speed; Set the direction in Parameters-Ctrl-X BMZ Dir

4. PAR

In order to enter the parameter page, you need to enter a code. The code is; 1

4.1 Ctrl

Control parameters setting area, Long press \uparrow and \downarrow to change page.

- $\mathrm{X} / \mathrm{Y} / \mathrm{Z} / \mathrm{C}$ Numerator: Electric gear ratio (1-99999) See next page, 4.1.1, for instructions on how to set
- $\mathrm{X} / \mathrm{Y} / \mathrm{Z} / \mathrm{C}$ Denominator: Electric gear ratio(1-99999)
- $\mathrm{X} / \mathrm{Y} / \mathrm{Z} / \mathrm{C}$ Reference:In manual operation, long press $\mathrm{X} / \mathrm{Y} / \mathrm{Z} / \mathrm{C}$ to clear the coordinates and show this value; or in machine zero, after hit the switch, it will show this value.
- X/Y/Z/C Backlash: Backlash to make it more precise
- $\mathrm{X} / \mathrm{Y} / \mathrm{Z} / \mathrm{C}$ Boot Zero: 0 means the axis will not go back to machine zero after booting; 1 means the axis will go back to machine zero after booting
- $\mathrm{X} / \mathrm{Y} / \mathrm{Z} / \mathrm{C}$ BMZ Dir: 0 means the axis go back to machine zero towards negative direction; 1 means the axis go back to machine zero towards positive direction
- Speed + Time (ms): time use for motor to reach F speed
- Jog+Distance: in manual operation, increment for jogging. Unit of it is depended on electric gear ratio.
- Language: English (0)or Chinese(1)

4.1.1 Setting of Electronic Gear Ratio \& Steps Per Unit

Setting the electronic gear is to set different data unit for different machines. Different axis of the same machine can be set based on different unit. For example, axis A can be set as mm, axis B can be set as angle, and axis C can be set as round.

How to set the numerator and denominator of electronic gear ratio:
Pulse needed for the motor to turn one round to the same direction
Distance moved when the motor turn one round to the same direction $(\mu \mathrm{m})$
Numerator and denominator both should be integer between 1 and 99999.

Ex. 1 Screw Transmission

Stepper motor stepping is 5000 , or servo motor 5000 pulse/round, screw pitch is 6 mm , reduction ratio is $1: 1$, then,
$5000 \rightarrow 5$
6*1000*1.0 $\rightarrow 6$
Ex. 2 Rack and Pinion
Stepper motor stepping is 6000 , or servo motor 6000 pulse/round, gear teeth number is $20, \mathrm{~m}=\mathrm{p} / \pi=2$, then
$6000 \rightarrow 1 \rightarrow 107 \rightarrow 107$
$1000 * 20 * 2 * 3.14159265 \rightarrow 20.943951 \rightarrow 2241.00276 \rightarrow 2241$
Ex. 3 Rotary Angle
Stepper motor stepping is 5000 , or servo motor 5000 pulse/round, reduction ratio is $1: 30$, then,
5000*30 $\rightarrow 5$
$360 * 1000 \rightarrow 12$

4.2 Speed

- $\mathrm{X} / \mathrm{Y} / \mathrm{Z} / \mathrm{C}$ Highest: The highest speed of x axis motor. When the system is operating, speed will not exceed this number no matter what F you set.
- Start($\mathrm{mm} / \mathrm{min}$)Speed during $\operatorname{Spd}+$ Time
- Man High: Manual high speed
- Man Low: Manual low speed
- BMZ High: Go to machine zero at high speed.
- BMZ low: Go back to machine zero first at high speed, through zero switch and move back at low speed. Finally slider will stop on the switch.
- BMZ Mode: two modes to go back to machine zero, trough switch or not. Through switch(0): slider will stop on switch. Not trough switch(1): Slider will stop before the switch.
- S High Speed: The highest speed of spindle

4.3 Input

This function enables users to set various kinds of switches very easily. Define the I/O port according following form. External Big switch is needed to finish external control. External switch is connected in the way of normal open(NO). Press R to change off into on, and S to choose N.O.(Normal Open). Then choose the IO Port number in the blank.

Note: For safety consideration, limit and emergency stop input is usually set as N.C.(Normal Close).

Function	Explanation
Alert	Alert Input
Stop	Emergency Stop Input
Run	Outside(External) Run Switch Setting
Pause	Outside(External) Pause Switch Setting
Speed+	Feed rate increase Switch Setting
Speed-	Feed rate decrease Switch Setting
X Lim+ +	X axis Positive limit setting
X Lim-	X axis Negative limit setting
X 0	X axis zero switch setting
Man X+	X axis clockwise spinning outside manual switch
Man X-	X axis counter clockwise spinning outside manual switch
X Boot Zero	X axis go back to Machine zero after booting external manual switch
Y Lim+ +	Y axis Positive limit setting
Y Lim-	Y axis Negative limit setting
Y 0	Y axis zero switch setting
Man Y+	Y axis clockwise spinning outside manual switch
Man Y-	Y axis counter clockwise spinning outside manual switch
Y Boot Zero	Y axis go back to Machine zero after booting external manual switch
Z Lim+	Z axis Positive limit setting

Z Lim-	Z axis Negative limit setting
Z 0	Z axis zero switch setting
Man Z+	Z axis clockwise spinning outside manual switch
Man Z-	Z axis counter clockwise spinning outside manual switch
Z Boot Zero	Z axis go back to Machine zero after booting external manual switch
C Lim+	C axis Positive limit setting
C Lim-	C axis Negative limit setting
C 0	C axis zero switch setting
Man C+	C axis clockwise spinning outside manual switch
Man C-	C axis counter clockwise spinning outside manual switch
C Boot Zero	C axis go back to Machine zero after booting external manual switch

4.4 Output

PAR		P1000	123	
	M51: Output 0 Off	M59:Output 0 Off		
	M52:Output 0 Off	M60:Output 0 Off		
	M53:Output 0 Off	M61:Output 0 Off		
	M54:Output 0 Off	M62:Output 0 Off		
	M55:Output 0 Off	M63:Output 0 Off		
	M56:Output 0 Off	M64:Output 0 Off		
	M57:Output 0 Off	M65:Output 0 Off		
	M58:Output 0 Off	M66:Output 0 Off		
	M03:Output 0 Off			
	M04:Output 0 Off			
	Press Enter to choose on/off			
				1/1
A	Ctrl Speed	Input	Output	FTY

In this interface to define the open and close of 1-8 output port, then you can directly use in programming. M03-M04 is spindle interlock.

4.5 FTY

Go back to factory value.

4.6 Operation

- Press $\longleftrightarrow \uparrow \uparrow$ to move the cursor
- Long Press $\uparrow \downarrow$ to change page
- After changing the parameters, press ESC, here appears the window ask whether save the parameters or not, press Enter and save, press ESC or Not to give up saving.

5. Prog

In this interface to edit, read, delete, save and create program files.

6. USB

- Boot Picture Name: K123.bmp or K1234.bmp Pixel: 320*240
- Program Name: P123.TXT or P1234. TXT

Program Name: Must start with a P and end in .TXT (must be capital .TXT)

Programming

1. Introduction

1.1 Program Name

The name of a Program in USB or in system has to be $\mathrm{P}+$ number,
Like P1, P123, P1234

1.2 Code Explanation

Same Code might means differently in different place.

Code	Number Range	Meaning
N	$0 \sim 9999$	Sub program name
N	$0 \sim 99999$	Program Name
G	$0 \sim 99$	G code
X	$+0.001 \sim$	X axis
Y	+99999.999	Y axis
Z	(mm)	Z axis
		C axis
C	$+0.001 \sim$	Radius
R	+99999.999 mm	
K	$0.001 \sim 99999.999 \mathrm{~s}$	Delay Time
F	$0 \sim 99999$	Feeding speed
S	$0 \sim 99999 \mathrm{r} / \mathrm{min}$	Spindle speed
M	$00 \sim 99$	M code

2.G Code

Non Modal G code: Valid only in this Program line
Modal G code: Valid until another G code of the same Group is used.

G Code	Modal	Format	Function
G00	Modal	G00 X_Y_Z_C_-	G00 X_Y_Z_C_F_

G24		G24 Note: G22 and G44 used in pair	Subprogram End
G25		G25 Nxxxxx	Skip
G90	Modal	G90	Absolute Programming
		Incremental Programming	
G91		G92 X_Y_Z_C_	Set Coordinates
G92			

2.1G00——Fast Positioning

Formula: G00 X_Y_Z_C_
Note: Set the speed in Parameters-Speed.
Ex.: Tool move from A to B at fast speed.

Absolute Programming:
N001 G90
N002 G00 X138 Y80
Or
N001 G90 G00 X138 Y80
Incremental Programming
N001 G91
N002 G00 X46 Y40
Or
N001 G91 G00 X46 Y40

2.2 G01——Linear Interpolation

Formula: G01 X_Y_Z_C_F_
Note: If F is not set, then axis will move at speed of starting speed, set the highest speed in Parameters-Speed.

Ex.:

Absolute Programming:
N001 G90

N002 G00 X126 Y80		A \rightarrow B
N003 G01 X84 Y120	F500	B \rightarrow C
N004 G01 X84 Y160	F500	C \rightarrow D
N005 G01 X126 Y160	F500	D \rightarrow E
N006 G01 X84 Y200	F500	E \rightarrow F

Incremental Programming:
N001 G91

N002 G00 X84 Y40	A \rightarrow B	
N003 G01 X-42 Y40	F500	B \rightarrow C
N004 G01 Y40	F500	C \rightarrow D
N005 G01 X42	F500	D \rightarrow E
N006 G01 X-42 Y40	F500	E \rightarrow F

2.3 G02——Clock wise Interpolation

Formula: G02 X_Y_R_F_
Note:
(1) F is the speed
(2) Whole circle can not be finished one time
(3) R is the radius, " +R " used when $<180^{\circ}$, " -R "used when $>180^{\circ}$
(4) The distance between starting point and end point has to be smaller than 2 R , otherwise it will not be operated.

Ex.

Absolute Programming:
N001 G90
N002 G02 X30 Y20 R15 F800 A \rightarrow B
N003 G00 X10 Y50
$B \rightarrow C$
Incremental Programming:
N001 G91
N002 G02 X20 Y10 R15 F800 A \rightarrow B
N003 G00 X-20 Y30 B \rightarrow C

2.4 G03-Counter Clockwise Interpolation

Format: G03 X_Y_R_F_
Note:
(1) F is the speed
(2) Whole circle can not be finished one time
(3) R is the radius, " +R " used when $<180^{\circ}$, " R " used when $>180^{\circ}$
(4) The distance between starting point and end point has to be smaller than $2 R$, otherwise it will not be operated.

Ex:

Absolute Programming:
N001 G90
N002 G03 X30 Y20 R15 F800 A \rightarrow B
N003 G00 X10 Y50 $\quad \mathrm{B} \rightarrow \mathrm{C}$
Incremental Programming:
N001 G91
N002 G03 X20 Y10 R15 F800 A \rightarrow B
N003 G00 X-20 Y30 B \rightarrow C

2.5 G04-Delay Time

Format: G04 Kxxxxx.xxx
Note: 0.001~99999.999s
Ex: G04 K5

2.6 G20——Subprogram Call

Format: G20 Nxxxx.xxx
Note:
(1) xxxx means subprogram name, xxx means repeat times.
(2) Repeat time: 1~999
(3) If repeat time is 0 or not filled, G04 will be repeat once.

EX:

N010 G20 N234.10
N100 G22 N234
N101 G91
N102 G01 X10 Y10 F500
N103 G24

Call the subprogram named 234, repeat 10 times
Subprogram start, name as 234
Incremental Programming

Linear Interpolation
Subprogram End

2.7 G25——Skip

Format: G25 Nxxxxx
Note: number after N means the line skip to
Ex:
N001 G00 X10 Y10 Fast Positioning
N002 G01 X800 Y300 F1500 Linear Interpolation
N003 G25 N001
Skip to N001

2.8 G92_-Set Coordinates

Format: G92 X_Y_Z_C_
Note: Set current location as new coordinates

3.M Code

M code is used to control input and output.

Code	Functions
M02	Program End
M03	Spindle clockwise spinning
M04	Spindle counter clockwise spinning
M05	Spindle Stop
M51~M66	Corresponding output port open or close

EX:
(1) First find PAR-Output, input Output 1 for M51; then press Enter to turn "Off" to "On"; Press ESC, Then press Enter to save.
(2) Press PROG, then New, type in a name, then press ENTER, and then you can start to edit;

N001 M03 S200	Spindle spin clockwise at 200r/min
N002 G04 K5	Delay 5 s

N003 G01 X100 Y100 F1500 Linear Interpolation
N004 M04 S200 Spindle spin counter clockwise at 200r/min
N005 G04 K5 Delay 5s

N006 G01 X50 F1500 Linear Interpolation
N007 M05 Spindle stop

N008 M51 Output port 1 is connected
N009 M02 Program End
(3) After finishing edition, press Save, then press AUTO and Start to run.

4.Spindle

S code is used to control the speed of the spindle, this controller use analog voltage controlling method to control spindle speed.

Note: S code can not support power off memory.
EX: N001 M03 S1000 Spindle spin clockwise at 1000r/min

Wiring Diagram

1.

Back View

Pulse	System Spindle Power Output	I/O Power Input	Input
	24V OG AGND A0+	V G 161514131211	1009080706

2. Wiring Instruction

$\mathrm{Xp}+$	X axis pulse positive output
$\mathrm{Xp}-$	X axis pulse negative output
$\mathrm{Xd}+$	X axis direction positive output
$\mathrm{Xd}-$	X axis direction negative output
$\mathrm{Yp}+$	Y axis pulse positive output
$\mathrm{Yp}-$	Y axis pulse negative output
$\mathrm{Yd}+$	Y axis direction positive output
$\mathrm{Yd}-$	Y axis direction negative output
$\mathrm{Zp}+$	Z axis pulse positive output
$\mathrm{Zp}-$	Z axis pulse negative output
$\mathrm{Zd}+$	Z axis direction positive output
$\mathrm{Zd}-$	Z axis direction negative output
$\mathrm{Cp}+$	C axis pulse positive output
$\mathrm{Cp}-$	C axis pulse negative output
$\mathrm{Cd}+$	C axis direction positive output
$\mathrm{Cd}-$	C axis direction negative output
$01 \sim 08$ (Output)	Output $01-08$, Connect to power $24 \mathrm{~V}+$ through Relay or solenoid valve

$01 \sim 16$ (Input)	Connect to power 24V- through machine or switch
AGND	Analog Spindle Output 0-10V Positive
AO +	Analog Spindle Output 0-10V Negative
24 V	System Power Positive
24 G	System Power Negative
V	I/O Power Positive
G	I/O Power Negative

3. Connection

```
\(X p+X p-\quad X d+X d-Y p+Y p-\)
```


24V 24G AGND A0+

Reference

How to use

1. Wiring according to instruction
2. After booting, press $\quad \square$ and find the button for code and \log in.
3. Press PAR, then choose Output; Set M51, Output 1, Press Enter to turn the output port On; Set M52, Output 1, maintain Off; Set M53, Output 2, Press Enter to turn On; Set M54, Output 2, stay Off; Press ESC, then Enter to save.
4. Press PROG, then New, type in a name, then press ENTER, and then you can start to edit;

Program Line
N001 G90
N002 G00 X10 Y10
N003 G02 X30 Y20 R15 F800
N004 M03 S500
N005 M51
N006 G04 K5
N007 M52
N008 M04 S800
N009 M53
N010 G04 K5
N011 M54
N012 M05
N013 M02

Explanation

Absolute Programming
Fast Positioning
Clockwise Interpolation
Spindle Clockwise Spin
Output
Delay
Output
Spindle Counter Clockwise Spin
Output
Delay
Output
Spindle Stop
End
5.Press Test, if there is no mistake, press Save, Then press Auto, and Start.

