KL-6060D Closed Loop Stepping System

1. Introduction

Descriptions

KL-6060D is a new generation hybrid servo driver, it combines the advantage of the servo system and stepper system, the system acts as nothing more than a high pole servo motor, the classic stepper motor noises and resonances vanish. Because the position is controlled, the motor can also no longer lose any steps up to its maximum torque.

Features

- Closed-loop control, no longer lose any steps, up to its maximum torgue;
- higher torque and higher speed;
- Fast response;
- Reduced motor heating and more efficient;
- Zero-speed stability;
- Smooth motion and super-low motor noise;
- No Tuning and always stable;
- Lower cost.

Applications

KL-6060D is a low-cost, high-performance servo systems, suitable for a variety of large-scale automated equipments and instruments, such as low-cost, low vibration, noise, high-precision, high-speed devices, And it is ideal for applications where the equipment uses a belt-drive mechanism or otherwise has low rigidity and you don't want it to vibrate when stopping.

Electrical Specifications

Parameter	Min	Typical	Max	Unit
Input Voltage(DC)	20	-	60	VDC
Output Current	0	-	6.0	А
Pulse Signal Frequency	0	-	200	KHZ
Logic Signal Current	7	10	16	MA

2. Microstep and Dir Setting

Steps/Revolution:

Step/Rev	SW1	SW2	SW3	SW4
Default	on	on	on	on
800	off	on	on	on
1600	on	off	on	on
3200	off	off	on	on
6400	on	on	off	on
12800	off	on	off	on
25600	on	off	off	on
51200	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
40000	off	off	off	off

Motor Direction (SW5)

Motor Direction			
SW5 ON OFF			
Direction	CW	CCW	

Alarm Output(SW6)

Reference Chapter 3 Stator Signal Connector.

3. Connectors and Pin Assignment

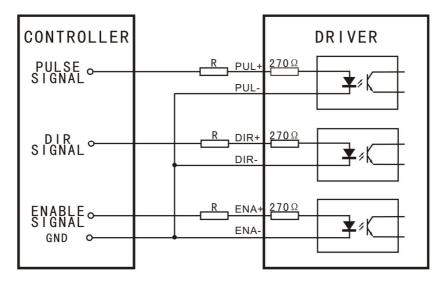
The KL-6060D has four connectors, connector for control signals connections, connector for stator signal connections, connector for encoder feedback and connector for power and motor connections.

Control signal	Connector
-----------------------	-----------

Control Signal connector			
Name	Description		
PUL+	Pulse signal positive		
PUL-	Pulse signal negative		
DIR+	Direction signal positive		
DIR-	Direction signal negative		
ENA+	Enable signal positive, usually left unconnected(enable)		
ENA-	Enable signal negative, usually left unconnected(enable)		

Stator Signal Connector

Stator Signal Connector			
Name	SW6 OFF	SW6 ON	
ALM+	Alarm Signal: OC output,	Alarm Signal: OC output,	
	Normally open, positive	Normally closed, positive	
ALM-	Alarm Signal: OC output,	Alarm Signal: OC output,	
	Normally open, negative	Normally closed, negative	


Encoder Extension Cable Pin Out

Name	Color
EGND	White
VCC	Red
EA-	Blue
EA+	Black
EB-	Green
EB+	Yellow

Power and Motor Connector

Name	Description
A+	Motor Phase A+(Blue)
A-	Motor Phase A- (Yellow)
B+	Motor Phase B+ (Black)
В-	Motor Phase B- (Red)
ADC	Power supply, 20~60VDC
GND	ground

Control Signal Connector Interface

Figure1: Common-Cathode

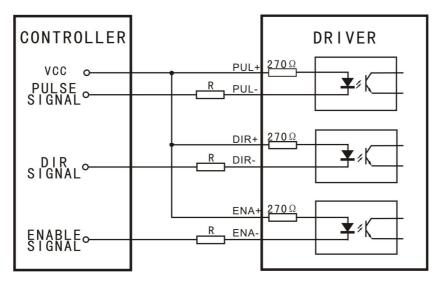


Figure2: Common-Anode

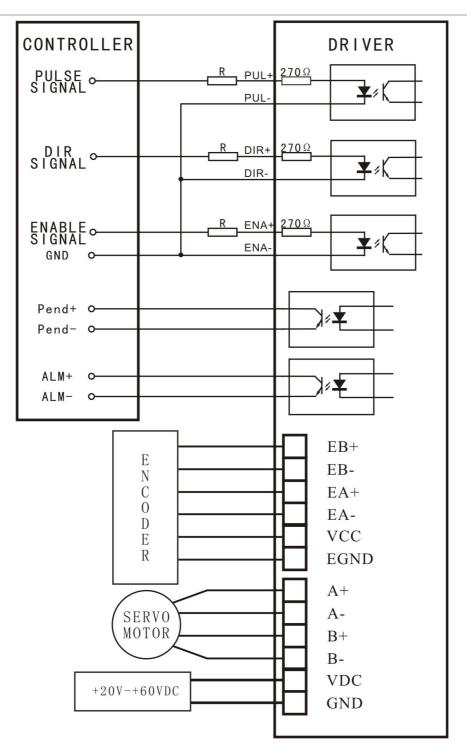


Figure 3: Typical Connection

VCC	R
5V	0
12V	680 Ω
24V	1.8KΩ

4. Problems and Solutions

problems	Possible cause	solutions
	No power supply	Check the power supply
Motor is not	No control signal	Check the control signal
rotating		Don't connected the enable signal or
	The driver is disabled	enable the driver
	Supply voltage is too high or too	
	low	Check the supply voltage
	Motor line wrong connect	Check the motor wiring
ALM lights	Encoder line wrong connect	Check the encoder wiring
flashing		Check motor lines eliminate the
	Motor line short-circuit	short-circuit
	Motor or drive failure	Replace the motor or drive
	Lose step	Restart driver
Motor rotates in		
the wrong	SW5 setting wrong	Change SW5 state
direction		
Inaccurate	The Micro steps set incorrectly.	Set the correct segments
Position	Control signal is interfered	Eliminate interference
Madaar Sdall 1	Power supply voltage too low	Increasing the supply voltage
Motor Stalled	Accelerating time is too short.	Extend the acceleration time

5. Mechanical Specifications (unit: mm(inch),1 inch = 25.4mm)

